ERG K+ currents regulate pacemaker activity in ICC.
نویسندگان
چکیده
Ether-à-go-go-related gene (ERG) K channels have been implicated in the generation of pacemaker activities in the heart. To study the presence and function of ERG K channels in the pacemaker cells of the small intestine [the interstitial cells of Cajal (ICC)], a combination of patch-clamp techniques, tissue and live cell immunohistochemistry, RT-PCR, and in vitro functional studies were performed. Nonenzymatically isolated ICC in culture were identified by vital staining and presence of rhythmic inward currents. RT-PCR showed the presence of ERG mRNA in the intestinal musculature, and immunohistochemistry on tissue and cultured cells demonstrated that protein similar to human ERG was concentrated on ICC in the Auerbach's plexus region. Whole cell ERG K+ currents were evoked on hyperpolarization from 0 mV (but not from -70 mV) up to -120 mV and showed strong inward rectification. The currents were inhibited by E-4031, cisapride, La3+, and Gd3+ but not by 50 microM Ba2+. The ERG K+ inward current had a typical transient component with fast activation and inactivation kinetics followed by significant steady-state current. E-4031 also inhibited tetraethylammonium (TEA)-insensitive outward current indicating that the ERG K+ current is operating at depolarizing potentials. In contrast to TEA, blockers of the ERG K+ currents caused marked increase in tissue excitability as reflected by an increase in slow-wave duration and an increase in superimposed action potential activity. In summary, ERG K channels in ICC contribute to the membrane potential and play a role in regulation of pacemaker activity of the small intestine.
منابع مشابه
Clotrimazole-sensitive K+ currents regulate pacemaker activity in interstitial cells of Cajal.
Interstitial cells of Cajal (ICC) are pacemaker cells for gut peristaltic motor activity. Compared with cardiac pacemaker cells, little is known about mechanisms that regulate ICC excitability. The objective of the present study was to investigate a potential role for clotrimazole (CTL)-sensitive K currents (I(CTL)) in the regulation of ICC excitability and pacemaker activity. ICC were studied ...
متن کاملEther-a-go-go-related gene 3 is the main candidate for the E-4031-sensitive potassium current in the pacemaker interstitial cells of Cajal.
The interstitial cells of Cajal (ICC), as pacemaker cells of the gut, contribute to rhythmic peristalsis and muscle excitability through initiation of slow-wave activity, which subsequently actively propagates into the musculature. An E-4031-sensitive K(+) current makes a critical contribution to membrane potential in ICC. This study provides novel features of this current in ICC in physiologic...
متن کاملMuscarinic regulation of ether-a-go-go-related gene K+ currents in interstitial cells of Cajal.
The interstitial cells of Cajal (ICC) of the myenteric plexus generate a set of currents that evoke a pacemaker potential that sets the initial conditions for the contraction frequency and duration of the electrically coupled intestinal musculature. The synapse-like contacts between ICC and myenteric motor nerves highlight the potential role of the enteric nervous system in regulating the pacem...
متن کاملInvolvement of thromboxane a(2) in the modulation of pacemaker activity of interstitial cells of cajal of mouse intestine.
Although many studies show that thromboxane A(2) (TXA(2)) has the action of gastrointestinal (GI) motility using GI muscle cells and tissue, there are no reports on the effects of TXA(2) on interstitial cells of Cajal (ICC) that function as pacemaker cells in GI tract. So, we studied the modulation of pacemaker activities by TXA(2) in ICC with whole cell patch-clamp technique. Externally applie...
متن کاملInterplay of Hydrogen Sulfide and Nitric Oxide on the Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine
We studied whether nitric oxide (NO) and hydrogen sulfide (H(2)S) have an interaction on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of NO and H(2)S on pacemaker activities were investigated by using the whole-cell patch-clamp technique and intracellular Ca(2+) analysis at 30℃ in cultured mouse ICC. Exogenously applied (±)-S-nitroso-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 285 6 شماره
صفحات -
تاریخ انتشار 2003